按字母分类的 HTML5 实体名称 - S

较老的浏览器可能不支持下表中的所有 HTML5 实体。

Chrome 和 Opera 的支持是很好的,而 IE 11+ 和 Firefox 35+ 支持所有实体。

字符 实体名称 十六进制 十进制
ŚSacute0015A346
śsacute0015B347
sbquo0201A8218
⪼Sc02ABC10940
≻sc0227B8827
⪸scap02AB810936
ŠScaron00160352
šscaron00161353
≽sccue0227D8829
⪴scE02AB410932
⪰sce02AB010928
ŞScedil0015E350
şscedil0015F351
ŜScirc0015C348
ŝscirc0015D349
⪺scnap02ABA10938
⪶scnE02AB610934
⋩scnsim022E98937
⨓scpolint02A1310771
≿scsim0227F8831
СScy004211057
сscy004411089
sdot022C58901
⊡sdotb022A18865
⩦sdote02A6610854
⤥searhk0292510533
⇘seArr021D88664
↘searr021988600
↘searrow021988600
§sect000A7167
;semi0003B59
⤩seswar0292910537
∖setminus022168726
∖setmn022168726
✶sext0273610038
𝔖Sfr1D516120086
𝔰sfr1D530120112
⌢sfrown023228994
♯sharp0266F9839
ЩSHCHcy004291065
щshchcy004491097
ШSHcy004281064
шshcy004481096
↓ShortDownArrow021938595
←ShortLeftArrow021908592
∣shortmid022238739
∥shortparallel022258741
→ShortRightArrow021928594
↑ShortUpArrow021918593
­shy000AD173
ΣSigma003A3931
σsigma003C3963
ςsigmaf003C2962
ςsigmav003C2962
sim0223C8764
⩪simdot02A6A10858
≃sime022438771
≃simeq022438771
⪞simg02A9E10910
⪠simgE02AA010912
⪝siml02A9D10909
⪟simlE02A9F10911
≆simne022468774
⨤simplus02A2410788
⥲simrarr0297210610
←slarr021908592
∘SmallCircle022188728
∖smallsetminus022168726
⨳smashp02A3310803
⧤smeparsl029E410724
∣smid022238739
⌣smile023238995
⪪smt02AAA10922
⪬smte02AAC10924
⪬︀smtes02AAC + 0FE0010924
ЬSOFTcy0042C1068
ьsoftcy0044C1100
/sol0002F47
⧄solb029C410692
⌿solbar0233F9023
𝕊Sopf1D54A120138
𝕤sopf1D564120164
spades026609824
♠spadesuit026609824
∥spar022258741
⊓sqcap022938851
⊓︀sqcaps02293 + 0FE008851
⊔sqcup022948852
⊔︀sqcups02294 + 0FE008852
√Sqrt0221A8730
⊏sqsub0228F8847
⊑sqsube022918849
⊏sqsubset0228F8847
⊑sqsubseteq022918849
⊐sqsup022908848
⊒sqsupe022928850
⊐sqsupset022908848
⊒sqsupseteq022928850
□squ025A19633
□Square025A19633
□square025A19633
⊓SquareIntersection022938851
⊏SquareSubset0228F8847
⊑SquareSubsetEqual022918849
⊐SquareSuperset022908848
⊒SquareSupersetEqual022928850
⊔SquareUnion022948852
▪squarf025AA9642
▪squf025AA9642
→srarr021928594
𝒮Sscr1D4AE119982
𝓈sscr1D4C8120008
∖ssetmn022168726
⌣ssmile023238995
⋆sstarf022C68902
⋆Star022C68902
☆star026069734
★starf026059733
ϵstraightepsilon003F51013
ϕstraightphi003D5981
¯strns000AF175
⋐Sub022D08912
sub022828834
⪽subdot02ABD10941
⫅subE02AC510949
sube022868838
⫃subedot02AC310947
⫁submult02AC110945
⫋subnE02ACB10955
⊊subne0228A8842
⪿subplus02ABF10943
⥹subrarr0297910617
⋐Subset022D08912
⊂subset022828834
⊆subseteq022868838
⫅subseteqq02AC510949
⊆SubsetEqual022868838
⊊subsetneq0228A8842
⫋subsetneqq02ACB10955
⫇subsim02AC710951
⫕subsub02AD510965
⫓subsup02AD310963
≻succ0227B8827
⪸succapprox02AB810936
≽succcurlyeq0227D8829
≻Succeeds0227B8827
⪰SucceedsEqual02AB010928
≽SucceedsSlantEqual0227D8829
≿SucceedsTilde0227F8831
⪰succeq02AB010928
⪺succnapprox02ABA10938
⪶succneqq02AB610934
⋩succnsim022E98937
≿succsim0227F8831
∋SuchThat0220B8715
∑Sum022118721
sum022118721
♪sung0266A9834
⋑Sup022D18913
sup022838835
¹sup1000B9185
²sup2000B2178
³sup3000B3179
⪾supdot02ABE10942
⫘supdsub02AD810968
⫆supE02AC610950
supe022878839
⫄supedot02AC410948
⊃Superset022838835
⊇SupersetEqual022878839
⟉suphsol027C910185
⫗suphsub02AD710967
⥻suplarr0297B10619
⫂supmult02AC210946
⫌supnE02ACC10956
⊋supne0228B8843
⫀supplus02AC010944
⋑Supset022D18913
⊃supset022838835
⊇supseteq022878839
⫆supseteqq02AC610950
⊋supsetneq0228B8843
⫌supsetneqq02ACC10956
⫈supsim02AC810952
⫔supsub02AD410964
⫖supsup02AD610966
⤦swarhk0292610534
⇙swArr021D98665
↙swarr021998601
↙swarrow021998601
⤪swnwar0292A10538
ßszlig000DF223
目录